Assignment 6

Hand in no. 4, 6, 7, and 8 by October 17, 2023.

1. Let $C^{k}[a, b]$ be the normed space consisting of all k-many times continuously differentiable functions under the norm

$$||f||_k = \sum_{j=0}^k ||f^{(j)}||_{\infty}$$

Show that

$$\rho(f,g) = \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{\|f-g\|_j}{1+\|f-g\|_j} ,$$

defines a metric on $C^{\infty}[a, b]$, the space of smooth functions.

2. Let H be the collection of all closed, bounded nonempty sets in a metric space (X, d). For $A, B \in H$, define

$$\rho(A,B) = \sup\{d(a,B): a \in A\},\$$

where

$$d(a, B) = \inf\{d(a, b) : b \in B\}.$$

- (a) Show that $\rho(A, B) = 0$ if and only if $A \subset B$.
- (b) Show that $\rho(A, B) \leq \rho(A, C) + \rho(C, B)$, $\forall A, B, C \in H$.
- (c) Verify that $d_H(A, B) \equiv \max\{\rho(A, B), \rho(B, A)\}$ defines a metric on H. (It is called the Hausdorff metric.)
- 3. Determine whether \mathbb{Z} and \mathbb{Q} are complete sets in \mathbb{R} .
- 4. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b]?
- 5. Let (X, d) be a metric space and $C_b(X)$ the vector space of all bounded, continuous functions in X. Show that it forms a complete metric space under the sup-norm.
- 6. We define a metric on \mathbb{N} , the set of all natural numbers by setting

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right| \,.$$

- (a) Show that it is not a complete metric.
- (b) Describe how to make it complete by adding one new point.
- 7. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p).$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$. In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X$$

(c) Deduce from (b) the completion theorem asserting that every metric space has a completion.

This approach is shorter than the proof given our notes. However, it is not so inspiring.

8. Let $f: E \to Y$ be a uniformly continuous map where $E \subset X$ and X, Y are metric spaces. Suppose that Y is complete. Show that there exists a uniformly continuous map F from \overline{E} to Y satisfying F = f in E. In other words, f can be extended to the closure of E preserving uniform continuity.