## Assignment 6

Hand in no. 4, 6, 7, and 8 by October 17, 2023.

1. Let $C^{k}[a, b]$ be the normed space consisting of all $k$-many times continuously differentiable functions under the norm

$$
\|f\|_{k}=\sum_{j=0}^{k}\left\|f^{(j)}\right\|_{\infty} .
$$

Show that

$$
\rho(f, g)=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \frac{\|f-g\|_{j}}{1+\|f-g\|_{j}}
$$

defines a metric on $C^{\infty}[a, b]$, the space of smooth functions.
2. Let $H$ be the collection of all closed, bounded nonempty sets in a metric space $(X, d)$. For $A, B \in H$, define

$$
\rho(A, B)=\sup \{d(a, B): a \in A\}
$$

where

$$
d(a, B)=\inf \{d(a, b): b \in B\}
$$

(a) Show that $\rho(A, B)=0$ if and only if $A \subset B$.
(b) Show that $\rho(A, B) \leq \rho(A, C)+\rho(C, B), \forall A, B, C \in H$.
(c) Verify that $d_{H}(A, B) \equiv \max \{\rho(A, B), \rho(B, A)\}$ defines a metric on $H$. (It is called the Hausdorff metric.)
3. Determine whether $\mathbb{Z}$ and $\mathbb{Q}$ are complete sets in $\mathbb{R}$.
4. Does the collection of all differentiable functions on $[a, b]$ form a complete set in $C[a, b]$ ?
5. Let $(X, d)$ be a metric space and $C_{b}(X)$ the vector space of all bounded, continuous functions in $X$. Show that it forms a complete metric space under the sup-norm.
6. We define a metric on $\mathbb{N}$, the set of all natural numbers by setting

$$
d(n, m)=\left|\frac{1}{n}-\frac{1}{m}\right|
$$

(a) Show that it is not a complete metric.
(b) Describe how to make it complete by adding one new point.
7. Let $(X, d)$ be a metric space. Fixing a point $p \in X$, for each $x$ define a function

$$
f_{x}(z)=d(z, x)-d(z, p)
$$

(a) Show that each $f_{x}$ is a bounded, uniformly continuous function in $X$.
(b) Show that the map $x \mapsto f_{x}$ is an isometric embedding of $(X, d)$ to $C_{b}(X)$. In other words,

$$
\left\|f_{x}-f_{y}\right\|_{\infty}=d(x, y), \quad \forall x, y \in X
$$

(c) Deduce from (b) the completion theorem asserting that every metric space has a completion.

This approach is shorter than the proof given our notes. However, it is not so inspiring.
8. Let $f: E \rightarrow Y$ be a uniformly continuous map where $E \subset X$ and $X, Y$ are metric spaces. Suppose that $Y$ is complete. Show that there exists a uniformly continuous map $F$ from $\bar{E}$ to $Y$ satisfying $F=f$ in $E$. In other words, $f$ can be extended to the closure of $E$ preserving uniform continuity.

